Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,4-Diazoniabicyclo[2.2.2]octane tetrachloroiodate(III) chloride

Li-Zhuang Chen

School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
Correspondence e-mail: clz1977@sina.com

Received 22 January 2010; accepted 2 March 2010
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; disorder in main residue; R factor $=0.019 ; \omega R$ factor $=0.045$; data-to-parameter ratio $=18.9$.

In the title compound, $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{2+} \cdot \mathrm{Cl}_{4} \mathrm{I}^{-} \cdot \mathrm{Cl}^{-}$, the dication and the anions lie on special positions. The dication has mm2 symmetry with two bonded C atoms and the two N atoms located on a crystallographic mirror plane parallel to $b c$, and with a mirror plane parallel to $a b$ passing through the mid points of the three $\mathrm{C}-\mathrm{C}$ bonds. In the square-planar $\mathrm{Cl}_{4} \mathrm{I}^{-}$ anion, two Cl atoms and the I atom are located on the mm 2 axis; the other two Cl atoms are disordered over two postions of equal occupancy (0.25) across the mirror parallel to the $a b$ plane. The Cl^{-}anion is located on the $m m 2$ axis. The crystal structure is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Related literature

For ferroelectric materials, see: Scott (2007); Katrusiak \& Szafrański (2006).

Experimental

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{2+} \cdot \mathrm{Cl}_{4} \mathrm{I}^{-} \cdot \mathrm{Cl}^{-}$
$V=1377.8(5) \AA^{3}$
$M_{r}=418.34$
$Z=4$
Orthorhombic, Cmcm
Mo $K \alpha$ radiation
$a=8.1496$ (16) \AA
$\mu=3.26 \mathrm{~mm}^{-1}$
$b=21.904$ (4) \AA
$T=293 \mathrm{~K}$
$c=7.7184(15) \AA$
$0.28 \times 0.25 \times 0.20 \mathrm{~mm}$

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)
$T_{\text {min }}=0.85, T_{\text {max }}=0.90$
7175 measured reflections 908 independent reflections 882 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019 \quad 48$ parameters
$w R\left(F^{2}\right)=0.045 \quad \mathrm{H}$-atom parameters constrained
$S=1.25$
908 reflections
$\Delta \rho_{\max }=0.44 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.41 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 4^{\mathrm{i}}$	0.91	2.29	$3.028(2)$	138

Symmetry code: (i) $x, y, z+1$.
Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by a start-up grant from Jiangsu University of Science and Technology

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2257).

References

Katrusiak, A. \& Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775-15785
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Scott, J. F. (2007). Science, 315, 954-959.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, o788 [doi:10.1107/S1600536810007865]

1,4-Diazoniabicyclo[2.2.2]octane tetrachloroiodate(III) chloride

L.-Z. Chen

Comment

Ferroelectric materials continue to attract much attention due to their potential applications in memory devices (Scott, 2007). Recently, diazabicyclo[2.2.2]octane (dabco) salts with inorganic tetrahedral anions having potassium dihydrophosphate-type (KDP-type) structures have been found to exhibit exceptional dielectric properties (Katrusiak \& Szafrański, 2006). In our laboratory, the title compound containing a diprotonated cation, $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{2+}$, a tetrachloroiodate and a Cl^{-}anions, has been synthesized. In this article, the crystal structure of the title compound is reported.

In the title compound (Fig. 1), all the species lie on special positions with only one quarter of each being part of the asymmetric unit. The I(III) ion in a square-planar coordination environment. The Cl 3 atom is disordered. The crystal structure is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Table 1).

Experimental

$\mathrm{KI}(0.5 \mathrm{~g})$ and $\mathrm{I}_{2}(0.7 \mathrm{~g})$ were dissolved in a solution of ethanol $(30 \mathrm{ml})$ and conc. $\mathrm{HCl}(13 \mathrm{ml})(36 \%)$. After addition of 1,4-diazoniabicyclo[2.2.2] octane (1 g) to the above solution, the mixture was stirred for 1 h and then filtered. The filtrate was left at room temperature to allow the solvent to evaporate. Yellow transparent block crystals were obtained after one weeks.

Refinement

All H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.91 \AA$, and refined using a riding model, with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C} / \mathrm{N})$. The Cl 3 atom was disordered over two sites

Figures

Fig. 1. The title compound with atomic labels; displacement ellipsoids were drawn at the 30% probability level.

1,4-Diazoniabicyclo[2.2.2]octane tetrachloroiodate(III) chloride

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{2+} \cdot \mathrm{Cl}_{4} \mathrm{I}^{-} \cdot \mathrm{Cl}^{-}$
$F(000)=808$
$M_{r}=418.34$
Orthorhombic, Cmcm
$D_{\mathrm{x}}=2.017 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 882 reflections

supplementary materials

$$
\begin{aligned}
a & =8.1496(16) \AA \\
b & =21.904(4) \AA \\
c & =7.7184(15) \AA \\
V & =1377.8(5) \AA^{3} \\
Z & =4
\end{aligned}
$$

Data collection

Rigaku SCXmini
diffractometer
Radiation source: fine-focus sealed tube
graphite
Detector resolution: 13.6612 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\text {min }}=0.85, T_{\text {max }}=0.90$
7175 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.045$
$S=1.25$
908 reflections
48 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \theta=3.2-27.5^{\circ} \\
& \mu=3.26 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Block, yellow } \\
& 0.28 \times 0.25 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

908 independent reflections
882 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.028$
$\theta_{\max }=27.5^{\circ}, \theta_{\min }=3.2^{\circ}$
$h=-10 \rightarrow 10$
$k=-28 \rightarrow 27$
$l=-9 \rightarrow 10$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0179 P)^{2}+1.0795 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.41$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0042 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
N1	0.0000	$0.34601(10)$	$0.9105(3)$	$0.0342(5)$	
H1	0.0000	0.3460	1.0284	0.041^{*}	
C1	0.0000	$0.41040(14)$	$0.8486(4)$	$0.0590(10)$	
H1A	0.0965	0.4315	0.8915	0.071^{*}	0.50
H1B	-0.0965	0.4315	0.8915	0.071^{*}	0.50
C2	$0.1498(3)$	$0.31364(11)$	$0.8488(3)$	$0.0442(5)$	
H2A	0.1502	0.2720	0.8917	0.053^{*}	
H2B	0.2472	0.3341	0.8917	0.053^{*}	
I1	0.5000	$0.453833(11)$	0.2500	$0.03008(11)$	
Cl1	0.5000	$0.56970(5)$	0.2500	$0.0529(3)$	
Cl2	0.5000	$0.34147(6)$	0.2500	$0.0918(6)$	
Cl3	$0.1864(17)$	$0.4465(8)$	0.2500	$0.0442(7)$	0.50
Cl3'	$0.2037(18)$	$0.4541(8)$	$0.223(2)$	$0.0442(7)$	0.25
Cl4	0.0000	$0.27673(5)$	0.2500	$0.0396(2)$	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0441(13)$	$0.0360(12)$	$0.0226(11)$	0.000	0.000	$0.0025(9)$
C1	$0.109(3)$	$0.0320(15)$	$0.0356(17)$	0.000	0.000	$-0.0016(13)$
C2	$0.0339(11)$	$0.0605(14)$	$0.0381(12)$	$0.0051(10)$	$-0.0025(9)$	$0.0047(10)$
I1	$0.02875(15)$	$0.03053(15)$	$0.03098(15)$	0.000	0.000	0.000
Cl1	$0.0619(8)$	$0.0343(5)$	$0.0624(7)$	0.000	0.000	0.000
C12	$0.0792(11)$	$0.0290(6)$	$0.167(2)$	0.000	0.000	0.000
C13	$0.025(2)$	$0.055(3)$	$0.052(4)$	$-0.005(3)$	0.000	0.000
C13'	$0.025(2)$	$0.055(3)$	$0.052(4)$	$-0.005(3)$	0.000	0.000
Cl4	$0.0516(6)$	$0.0410(5)$	$0.0261(4)$	0.000	0.000	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{N} 1-\mathrm{C} 1$	$1.489(4)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.490(2)$
$\mathrm{N} 1-\mathrm{C}^{\mathrm{i}}$	$1.490(2)$
$\mathrm{N} 1-\mathrm{H} 1$	0.9100
$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{ii}}$	$1.522(7)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9700
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9700
$\mathrm{C} 2-\mathrm{C} 2^{\mathrm{ii}}$	$1.525(4)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$110.37(15)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2{ }^{\mathrm{i}}$	$110.37(15)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 2^{\mathrm{i}}$	$110.0(2)$

$\mathrm{I} 1-\mathrm{Cl3}^{\prime}$	2.424 (16)
$\mathrm{I} 1-\mathrm{Cl} 3{ }^{\text {iiii }}$	2.424 (16)
$\mathrm{I} 1-\mathrm{Cl3}^{\text {iv }}$	2.424 (16)
$\mathrm{I} 1-\mathrm{Cl3}^{\prime 2}$	2.424 (16)
I1-Cl2	2.4612 (14)
I1-Cl1	2.5379 (13)
$\mathrm{I} 1-\mathrm{Cl} 3$	2.561 (15)
$\mathrm{I} 1-\mathrm{Cl} 3^{\text {iv }}$	2.561 (15)
$\mathrm{Cl3}^{\prime}-\mathrm{Cl}^{\prime \prime}{ }^{\text {v }}$	0.42 (4)
$\mathrm{Cl3}^{\text {ive }}-\mathrm{I} 1-\mathrm{Cl3}^{\prime \prime}$	179.7 (8)
Cl3'-I1-Cl2	90.2 (4)
$\mathrm{Cl} 3{ }^{\text {iiii }}-\mathrm{I} 1-\mathrm{Cl} 2$	90.2 (4)

supplementary materials

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$	108.7	$\mathrm{Cl3} 3{ }^{\text {iv }}-\mathrm{I} 1-\mathrm{Cl2}$	90.2 (4)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1$	108.7	$\mathrm{Cl3}^{\prime \prime}-\mathrm{I} 1-\mathrm{Cl} 2$	90.2 (4)
$\mathrm{C} 2{ }^{\text {i }}-\mathrm{N} 1-\mathrm{H} 1$	108.7	$\mathrm{Cl3}^{\prime}-\mathrm{I} 1-\mathrm{Cl1}$	89.8 (4)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 1{ }^{\text {ii }}$	108.72 (16)	$\mathrm{Cl3}^{\text {iiii }} \mathrm{I} 11-\mathrm{Cl1}$	89.8 (4)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.9	$\mathrm{Cl3} 3{ }^{\text {iv }}-\mathrm{Il}-\mathrm{Cl} 1$	89.8 (4)
$\mathrm{C} 1{ }^{\text {ii }}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.9	$\mathrm{Cl3}^{\prime \prime}$ - $\mathrm{I} 1-\mathrm{Cl1}$	89.8 (4)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.9	Cl2- $\mathrm{I} 1-\mathrm{Cl} 1$	180.0
C1 ${ }^{\text {ii }}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.9	$\mathrm{Cl} 3{ }^{\text {iiii }}-\mathrm{I} 1-\mathrm{Cl} 3$	173.9 (4)
H1A-C1-H1B	108.3	$\mathrm{Cl3}^{\text {iv- }}-\mathrm{I} 1-\mathrm{Cl} 3$	173.9 (4)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 2{ }^{\text {ii }}$	108.65 (12)	$\mathrm{Cl} 2-\mathrm{H} 1-\mathrm{Cl} 3$	86.4 (4)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.0	$\mathrm{Cl} 1-\mathrm{I} 1-\mathrm{Cl} 3$	93.6 (4)
$\mathrm{C} 2 \mathrm{ii}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.0	$\mathrm{Cl3}^{\prime}-\mathrm{I} 1-\mathrm{Cl}^{\text {iv }}$	173.9 (4)
N1-C2-H2B	110.0	$\mathrm{Cl3}^{\prime \prime}-\mathrm{I} 1-\mathrm{Cl3}^{\text {iv }}$	173.9 (4)
$\mathrm{C} 2{ }^{\mathrm{ii}}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.0	$\mathrm{Cl} 2-\mathrm{I} 1-\mathrm{Cl}^{\text {iv }}$	86.4 (4)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.3	$\mathrm{Cl} 1-\mathrm{I} 1-\mathrm{Cl}^{\text {iv }}$	93.6 (4)
$\mathrm{Cl} 3^{\prime}-\mathrm{I} 1-\mathrm{Cl3}^{\text {,iii }}$	179.7 (9)	$\mathrm{Cl} 3-\mathrm{I} 1-\mathrm{Cl} 3^{\text {iv }}$	172.8 (7)
$\mathrm{Cl3}^{\prime}-\mathrm{I} 1-\mathrm{Cl3}^{\text {,iv }}$	170.0 (8)	$\mathrm{Cl3}^{\prime 2}-\mathrm{Cl3}^{\prime}-\mathrm{I} 1$	85.0 (4)
$\mathrm{Cl} 3{ }^{\text {iiii }}$ - $\mathrm{I} 1-\mathrm{Cl3}^{\prime \prime}$	170.0 (8)		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Cl} 44^{\mathrm{vi}}$	0.91	2.29	$3.028(2)$	138
Symmetry codes: (vi) $x, y, z+1$.				

Fig. 1

